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An explicit solution is constructed for the axisymmetric problem of the stressed state of a hollow circular cone truncated by two
spherical surfaces (the ends of the cone) with a normal load acting on one of the ends (the other end is unloaded) and sliding
clamping or the side surfaces of the cone. A number of special cases is considered including the stressed state of a spherical
cupola supported on an absolutely rigid, smooth, plane base and there can be a conical incision at the centre of the cupola. The
method of solution is easily extended to the case of arbitrary axisymmetric loading of the ends and is based on the use of a new
integral transformation the derivation of which is presented. © 2000 Elsevier Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM

An elastic (shear modulus G, Poisson’s ratio ) hollow circular cone:a <r < b, wy < 8 < wy, —m, < ¢

< mr, truncated by two spherical surfaces r = @ and r = b, is subject to the action of a normal compres-

sive load of strength p(8) on the surface r = b while the other end of the cone (r = a) is assumed to be

unloaded. Conditions of sliding clamping are satisfied on the side conical surfaces § = wg and 6 = ;.
Adopting the notation

2Gu,(r, 0) = u(r,0), 2Gug(r,0) = u(r,0) (1.1
T,9(r, 8) = Tg,(1, 0) = 1,(6)
we write the boundary conditions
6,.(a,0)=1,.(a,0)=0, 0©,(b,0)=-p(@), 1,(00)=0, wW;=0=@, 1.2)
v(rw;)=0, 1,(r0;)=0, j=0k asrsb (1.3)

In order to solve the boundary-value problem, we shall use the solution of the Lamé equation in a
form which has been proposed earlier in [1]

u(r.0)= ®’(r,8)-2(1 - WrAF, v(r,8)=r"'®'(r,0) 1.4)
@(r, 0) = 1F(r) + 3~ 4)F, AAF =0

(FPFY VoF v F_(sinBF')'_ m*F
2 mé =

, =0,1,2,... 1.5
r’ r sin@ sin’ @ " (15)

AF =

Henceforth, a prime denotes a derivative with respect to » and a dot denotes a derivative with respect
to 6. As in [2], we represent the biharmonic function F in the form

F(r.0)= r’¥(r.0)+Q(r.0), A¥Y=AQ=0 (1.6)

This enables us to express the strain and stress fields, according to Eqs (1.4), in terms of the two
harmonic functions

= (1 =2W[r " +4r2W + 2771+ 200 - W)rVo ¥ + rQ” + 4(1 - Q' a7
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v =[P +(5- 4 +Q +G-qur'Qr (1.8)
1,(r,0)=A'(r,0), A(r0)=pr¥” +(1+20)rP —(1-2W¥ + (1 - V¥ +

+Q7 +(3-4p)rT'Qy (1.9)
(1=21)0,(r,0) = —(1 = 2W)[(1 = p)r W' + (7 = SPr*¥” + 25— w)r¥” +

B2+ W]+ (1= pyrQ” + (4p? = T+ 5)Q" + 8l — p)r~'Q +

+Vo {207 = Sp+2)(r¥Y - pr' Q'+ (- 4u)r'Q)) (1.10)

Hence, the problem reduces to finding the harmonic functions ¥ and {} from boundary conditions
(1.2) and (1.3).

In order to construct an exact solution of this problem, it is necessary to establish a suitable integral
transform and to derive an inversion formula for it. An integral transform is established below which
enables us to obtain not only the solution of the problem in question but also the solutions of more-
complex boundary-value problems for hollow cones, including non-axisymmetric cones.

2. DERIVATION OF THE INTEGRAL TRANSFORM

The derivation of the integral transform is based on the solution of the following Sturm-Liouville
boundary-value problems

-V, T®)-(A+)T0)=0, wy<8<w,, m=0,1,2,...

"

(2.1)
a) T(w;)=0, b) T'(mj)+th(u)j)=O, <) T'(mj)=0: ji=0,1
It should be noted that the conical functions
T(®) =P, 5 (cosO), 0"y, yx(cos®) (22)

are linearly independent solutions of the differential equation in (2.1) [2].

It is required to determine the eigenvalues A (or v, = —1/2+ivA; ) and the eigenfunctions of problems
(2.1) and to obtain a formula for the expansion of an arbitrary function in these eigenfunctions.

In order to use the well-known apparatus in [3], we make the substitution

T(8) = (sin 8)"2y(6) (23)
in (2.1) and reduce problem (2.1) to the boundary-value problem
Y (O)— (A +g(®)y(@) =0, @y <0<w, [g(B)sin’B8=m’ -] (2.4)
[;y(8) = y(w;)cosa; +y'(w;)sina; =0, j=0,1
which has been considered previously in [3].

Following the scheme proposed in [3] and taking account of relations (2.2) and (2.3), we start from
the functions

@o(8,1) = V/sinOP,"(cosB), %o(6,A)=+sin0Q] (cosB) (2.5)
v=-Y+ A

Using formula 3.4 (25) from [4], we calculate their Wronskian
W(‘P(n X()) == ,,,(V)

where
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22"F(L+ Yym+ % VT4+ Ym+ Y v)

L (V)= T-Y%m+ %4 -Ysm+Yv) (2.6)
Next, we construct the functions
—I,, (V)9(6.1) = (8, M)loXo ~ Xo(B.M)lo@o = V5inBF(8),
2.7
-L,, (V8. 1) = Vsin ', (8)
where
F".(8)= P"(cos8);xo — Q' (cos )94,  j=0.1 (2.8)
and find their derivatives. The Wronskian of these functions is found to be equal to
» Wie.x)=W= ~{lo®oliXo = h190loXo1/ T (V) (29)
- Taking into account the fact that, by virtue of relation (2.3),
1i9o = fsinw, B, 1y = Jsinw; [0V v(2.10)
where
Lf@)=1;f=sina,f (®;)+[cosa; + Jhctgw; sina; ] f(w)) (2.11)

instead of (2.9), we shall have
T, (VW = [sinw, sinw, A} (2.12)
Ky = RGO ~ RO

Hence, the function ®(6, A), defined by formula (1.6.2) from [3], has been constructed.
The eigenvalues A, of problem (2.4) and the eigenvalues associated with them v, = ~1/2+iv\, must
be found from the equation

Ay, =0, £=0,12,.. (2.13)

The equality

P = i P OQ o (2.14)
is a consequence of (2.13),

According to what has been previously described in [3],in order to obtain an expansion of the function
f(0) in the eigenvalues of problem (2.4), it remains to calculate the residue of the function ®(8, f) when
N = )\ using the formula given in [3] and to calculate the ratio x(8, A, )K¢(8, A;) Then, according to
relations (2.7), (2.8) and (2.10), we obtain

I, (VOX®O,A, )= Jsinw, sin6 ¢ (6,
k k 1 A * ( 21 5)
01'(8.v,) = P, (cos8) Q) — O, (cosO By}

Additionally, when account is taken of equality (2.14), we have

IOQ\I;I lll(e v‘)
(8,A;) = /sinw;sin® ‘m
i ¢ 0 [l QV‘ rm(vk)

x(8,A;)  [sinw, /Qm
I sin®, loQ"'
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On taking account of the fact that, according to relation (2.12) and the equality v = —1/2+iv\, the

equality
dw) _dW av __Jsina)osinco, A (Wo, ;)
Ao, dvdh.y, (2v, + DT, (V,) (2.16)
Am(w w,) = dA’c
k 0 17— dv
v=vy
holds in accordance with formula (1.6.5) from [3], we arrive at the expansion
o0 o 9 m e’ v (O] - ”
foy=-3 YN O [ Gryony,v,)f(w)dy (217)
k=0 O (g, @) g,
where
Loy,
S . YA | p— (2.18)
omk(wo'wl) IIQ ‘rm(vk)Ak ((DO’(DI)

Vi

As previously [3], it can be shown that expansion (2.17) holds for any function from L([wg, ®;]) and
behaves as regards its convergence in the same way as a conventional Fourier series. In particular,
converges to [f(6 + 0) + f(6 + 0)]/2 if the function f(8) has a bounded variation in the neighbourhood

of the point 0.
It is obvious by construction that the eigenfunction ¢}"(8, v;) satisfies (—1/4 —~\ = v + v) the Legendre
equation [4].

=V, 07 0.V )+ V(v + 19" (6,v,) =0, @y <8< (2.19)
and the boundary condition
Ley'(@.v,)=0, j=0.1 (2.20)

The result obtained can be interpreted as follows. We introduce the function g(8) = (sin 6)~2£(0)
for which the integral

wy
| Jsin®]g(8)]d (2.21)

exists.
Expansion (2.17) can then be treated as the inversion formula

R INCATY)
@=-3 =———=< 2.22
8 k=0 0',"‘.(0)0, 0‘)1 ) ( )
for the integral transform
o)
gl = | sin6@"(6,v,)g(0)de (2.23)

wy

We will now establish the relation between the eigenfunction (2.15), constructed for boundary-value
problem (2.4) or boundary-value problem (2.19), (2.20) and the eigenfunctions of boundary-value
problems (2.1) in cases a, b and ¢ (we shall call these problems (2.21),, (2.21), and (2.21),, respectively).
We obtain the eigenfunction ¢}'(8, v;) of boundary-value problem (2.1), from (2.15), if, in (2.11) and
boundary condition (2.20), we take o; = 0 (j = 0, 1). As a result, we shall have the function

@, (8,v,) = P/ (cos0)Qy (cos®,)— P} (cosw, Oy, (cosB) (2.24)

k
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-which satisfies the differential equation from (2.19) and the boundary conditions
0,/ (®;,v,)=0, j=0.l (2.25)

while the numbers v, have to be found from Eq. (2.3) which, in the case in question if one introduces
the notation

Q" (w4, 0,) = QL" = Pl(cos ;)0 (cos wy) — P! (cos 0,)Q" (cos @) (2.26)
can be written in the form
Q’v""_"'(coo,m, y=0, £=0,12,... (2.27)

Here, formula (2.18) is also changed and acquires the form

=(2v, +1) TR (2.28)

-1
| 0y, (cos®p) [ 3Q™" (wp, ®,)]
Uﬁlk(“’o» w)) Q(": (cosw;) v=v,;

In order to obtain the eigenfunction ¢;'(8, v;) of boundary-value problem (2.1),, we divide the
boundary conditions in (2.2) by sin o. We see from this that they convert into the boundary conditions
of problems (2.1), if it is taken that

ctgo; + Yhctgw; =h;, clga; =h; - Jctgw;, j=0,l (2.29)
In this case, the functionals l,‘-‘ become the functionals l?, that is,

dP)'(cosw);)

LR = l,;l" P = +h; P (cosw)) (2.30)

J
and, on the basis of relation (2.15), we obtain the function
O (0,v,) = P (cosO)[' Q. — Q) (cosB)I Oy (2.31)
This function will satisfy the boundary conditions
O, V) +hQ,(0;,v,)=0, j=0,l1 (2.32)

The numbers v have to be found form Eq. (2.13). If account is taken of the notation (2.26) and use
is made of the equality

dP;'(cos8)/dB = P"*!(cos 8) + mctg B, (cos 6) (2.33)
(which also holds for Q7(cos 8)) which follows from formula 3.6.1 (6) in [4], Eq. (2.13) takes the form
QU (00.0)=0, k=0,12,... (2.34)

where

Qm

(0o, 0) = Qutm+ +(metgmy + hy Q)" + (metgw, + A, Qmm g

+[m? ctg g ctg @, + m(hy ctg @, + by ctgwg) + hyhy QI (2.35)
In the given case, formula (2.18) takes the form
! Loy, | aQl,

=2V, + D5
! I,'kal",,,(vk) av

(2.36)

h
Ok (g, @) |v=vk
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We obtain the eigenfunction ¢7'(0, v;) of boundary-value problem (2.1), from (2.31) on putting
h; =0 (j = 0, 1) there, which leads to the formula

dO (cosw dP! (coswy)
ka ( 1 ) _ ‘,,y: (COS 9)_"‘_{1___0_ (2.37)

@' (8,v, )= P (cos8) o o

This function satisfies the boundary condition
O (w;.v;)=0, j=0, (2.38)
and the numbers v, have to be found from the equation

Am = QI\;"__()((DO‘(DI ) — 0, k = 0,, 1,2,... (2.39)

A\

We obtain an expression for (7, o(w, »;) from (2.35) by putting sy = 4, = 0 there. In this case, formula
(2.18) is written as

daQy 0y) | dOY (cosw,)
. | - (ka + l) ka (COS ()) ka 1 iQ’:"O
0-:u.k(("*)()’("’)l) d(l)() dOJ| ov

(2.40)

V=V,

Hence, integral transformation, which are based on Sturm~Liouville problems (2.21),, (2.21), and
(2.21), and which hold for functions having a finite integral (2.21), can be written, according to relations
(2.22) and (2.23), in the form

©;

g/ = | sin09.'(0,v,)g(0)d6, e=a.b,c (2.41)
(1)')
lQ(e)=_i .&.&M moses(u]

k=0 Oy (Wg, @)

3. SPECIAL CASES OF THE INTEGRAL
TRANSFORMATION OBTAINED

If we confine ourselves solely to the solution of the problem formulated above the application of the
integral transformations (2.41) when m = 0 is found to be sufficient. However, on changing to a non-
hollow cone (wg = 0), transformations (2.41) cannot be applied directly since, in these transformations,
it is necessary to take the limit as (wy — 0). First, we satisfy this passage to the limit expansion (2.17).

We start with the transcendental equation (2.13). By taking account of relations (2.12), (2.11) and
formula 3.6.1 (2) from [4], it can be shown that the second term when wy = 0in (2.13) is equal to zero
and Eq. (2.13) becomes

FRY =0, k=012,

» Moy t ) -
I/ B =sina, dh (cosw) +[cosa, +& ngIHal]Pv (cosmw) (3.1)
dw 2
or, by virtue of (2.33),
PJ:*'(C()sw)sin o, + P (cosw)[cosa, + (ctgwsinay Ym+14)=0, k=0.1.2,... (3.2)

According to relations (3.1) and (2.15), we arrive at the formula
@' (8, v =1/ Q) P (cos6) (33)

We now determine what the expression Af'(wg, ;) becomes when wy — 0. According to relations
(2.16) and (2.12), the equality
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anH

d Am . d Pm . J Qm moyx apm
av = I()QV [I —) ll P IO -) QV [0 ')

has to be considered when v = v;. By virtue of the behaviour of Legendre functions [4] in the neigh-
bourhood of unity, the principal contribution to A}'(wq, »,) when wy — 0 will be made by the first term
from (3.4) and it is therefore necessary to take

[f) P’”ll

(3.4)

A * i m m .)I*Pvm
Al (g, @) = [ (@)AY (@), Al(w)=> lav (3.5)
v=vy
If expressions (3.3) and (3.5) are substituted into (2.17) and (2.18), we obtain

«  /sinOP" (cosB)©
f@®=-3 ——— [ [sin YR (cosy) f(W)dy (3.6)

k=0 0-mk(("‘)) 0

where
I:*' n
PRSI L - (37)
cmk(m) Ak (w)rm(vk)

If, as earlier, the function g(6) is introduced, then expansion (3.6) can be looked upon as the inversion
formula

g@)=—% S(® LACH (3.8)
k=0 0ml\(
for the integral transformation
gl (@)= sin 82(8) R, (cos8)d (3.9)

(4

We see that the eigenfunction ¢;”(8) = P} (cos 0) satisfies the Legendre differential equation (2.19)
and boundary condition (3.1). This easily enables us to establish the relation between this function
and the eigenfunctions of boundary-value problems (2.1), if they are assumed to be defined in the
interval (0, w), that is, when the boundary 6 = wy disappears and w; = » and one can put Ay = 0,
hi = h, o, = 0, &y = a. Then, according to relations (3.1), the function ¢3'(8) will be an eigenfunction
of problem (2.1), when wy = 0, »; = w if we put a; = a = 0 in (3.1) and the numbers v; are found
from the transcendental equation

Py (cosw)= k=0,1,2,... (3.10)

The expansion formula (3.8) and (3.9) have been given previously in a some what different form
[5, 6] for this special case.

The function P7, (cos ) will also be an eigenfunction of problem (2.1), when vy = 0, ©; = w if the
numbers v, are found from the transcendental equation

Pyt (cosw)+ (h+mctgw)Py) (cosw) =0, k=0,1,2,... (3.11)

as can be shown by putting ctg o; = h—1/2ctg w in (3.1) and using (2.33).
The function ¢7'(€) will also be an eigenfunction of problem (2.1), when wg = 0, w; = w, if the numbers
v, are found from the transcendental equation

Pv"""'(cosco)+ nctg u)P\f"’ (cosm)=0, k=0,12,... (3.12)

which follows from (3.11) if one puts 4 = 0 there.

It is important to note that the transcendental equations (3.10) and (3.12) admit of explicit solutions
when o = 7/2.

We shall now prove this. For example, putting « = =/2 in (3.10) and using formulae 3.4 (20) and
1.2 (7) from [4], we reduce Eq. (3.10) to the form
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2"VRITA = Ym =Yy LU = YBm+ Vv )1 =0 (3.13)

from which we recognize two series of values v§ = 2k — m + 1, v = =2k + m — 2 which make the
left-hand side of equality (3.13) vanish. Here, the eigenfunction

0, (0) = P’i'. (cos0) = Pyi_,,,,(cos®) (3.14)

corresponds to the first series of values, v} but, according to formula 3.6.1 (2) from [4], we have for
integral indices

P (2)=0. m>I (3.15)

and, hence, eigenfunction (3.16) will not be zero solely when £ = m. For this reason, the eigen-
functions corresponding to the values v; are equal to zero for any value of k = 0, and the values of v,
therefore have to be discarded. In order to write out expansion (3.6) or (3.8), (3.9) for this particular
system, it is necessary to calculate o,,,(7/2) using formula (3.7) but in the case under consideration,
we have

v, =2k—-m+l, ,Q"' =05 ,,,H(O)—A'”(Z)

-)P’ll 4] -1 k+|2“‘_| X!
i " (3.16)
v v=2k—m+! I'(k —m+%)

22" Tk + 35)
Ttk —m+ 35k —m+1)

F,Qk—m+1)=

In order to obtain formula (3.16), equalities 3.4 (21) and and 3.4 (20) from [4] have been taken into

account.
On the basis of relations (3.7), (3.4) and (3.6), expansion (3.8) becomes

& (T 2)(4k —2m + 3k —m)!T(k —m+ ) B}, (cosB)

y e =
&( ) kzzm 7"‘A!r(k +/2 (3.17)
In the special case when m = (, we have
oo oA T n/2
g®==3 gk(a)(4k+3)l’2k+,(cose), gk(5j= JsinBg(8)P,,,,(cos0)do (3.18)
k=0 0

which is identical to the well-known result in [5].
We will now consider Eq. (3.12) when o = =/2. Like Eq. (3.10), Eq. (3.12) becomes Eq. (3.13), in
which m has to be replaced by m + 1, which leads to the expansion (v, = 2k — m)

P (T 2) 4k -2m+ 1)

8
0
#9)= A;u [, (2k = n)

m

Py, (cos0)
3.19
22Tk + 1) (3.19)

I,Qk-m)=
n " Tk—m+ B k=-—m+1)

which, in the special case when m = 0, gives the result known from [5].

4. THE SOLUTION OF THE PROBLEM

We will now apply integral transformation (2.41) to boundary-value problem (1.2), (1.3). In order to
satisfy conditions (1.3), it is sufficient, by formulae (1.8) and (1.9), to require that

Yi(rw)=Q(w;)=0, j=0,1I (4.1)
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These conditions dictate that integral transformation (2.41) when m = 0 and e = ¢ be applied to the
equations

A‘P=().. AQ =0, a<r<b wy<0<w 4.2)

The eigenfuncticn (2.37), which satisfies the Legendre equation (2.19), which we write in the form,

dP, (coswg)
-Q,, (cos 9)—‘d———— (4.3)

dQ,, (cosw;)
dw, W,

?.(8,v,)=PF, (cos0)

is the kernel of the above-mentioned transformation.
The numbers v, have to be found from Eq. (2.39) which can now be written in the form

Qilv=y, =0. £=0,12,...
4.4
Q! = P)(cos®)Q! (cosw,) - P} (cos wg)Ql(cos w,)
According to relation (2.38), the function (4.3) satisfies the condition
(p;i(_u)j,vk)=0, Jj=01 (4.5)

On applying the above-mentioned integral transformation to Eqs (4.2), taking account of conditions
(4.1) and (4.5) and solving the resulting differential equations for the transform of the functions ¥ and
Q, we find

Cor¥ 4+ DRtV
Clr¥% + D Vet

‘rl“(’) (4.6)

Qk(")

U k20
= j.smO“Q(r’e)

[ON

“(pl.(e. v, )do =

where C,’;, D,’c (j = 0, 1) are arbitrary constants which have to be found by satisfying boundary conditions
(l.lg’i)r.st, we satisfy the conditions
1,(0,0)=1,(a,0)=0, ©®,=6=<, 4.7)
In order to do this, it is sufficient to require that
Ah,0)=A(a,0)=0, iy =08 =W,
and to apply integral transformation (4.6) which leads to the equalities
Ay =Aa)=0, k=0.12,... (4.8)

where

)
A(r)= jsin BA(r.0)9 (0,v,)d0 =

Wy

= G-4Wr QN + QU + W+ (L +20)r ¥ () - (49)
(=2, (1) + (1 = )(VE + v, )P, ()
Substituting expressions (4.6) here and satisfying conditions (4.8), we obtain the equations
Cle,(2v, +3)p3 (v, )+ Cle,(2v, +Dpy(v) + Diey(2)g3 (v,) =0
Cle,(2)ey(2v, + 1)e,(2)p3 (v, ) — DPe,(2v, ~ Dey(2)g3 (Vi) — (4.10)

~Die,(2v, +1)gi(v,) =0

Here,
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e(x)=h'—a', e, (x)=(ab)’
P =x? +2x = (1=21),  py(x) = x> +2(1 = 2p)x — (3 - 4p) (4.11)
g ) =xt =2(1-p),  gh(x) = x> —dpx —4(1 -2p)
We now satisfy the remaining boundary conditions from (1.2), that is,
(1 -20)6,(8,0)==(1=2W)p(B), ©,(a,0)=0, wW;=06<,

We again apply integral transformation (4.6) to the conditions stated. As a result, after taking account
of formulae (1.10) and (4.6), we arrive at equations which can be obtained from Egs (4, 10) if the
following substitutions are made in them: A(vx) and Bp(v;) are substituted instead of p3 (v;) and p} (v;)
and g3 (v;) and g3(v;) are substituted instead of C () and D, (v;) respectively and, on the right-hand
side of the first equation, the expression (1 — 2u)p,b" "2 is substituted instead of zero and, on the right-
hand side of the second equation, (1 — 2p)pb" " is substituted instead of zero. Here, the symbols in
the above substitutions are interpreted as

A”(v‘) 3

B“(vk)

3

a; (1)
b,‘(}’l)

Cg(vk)
Dp (vk)

c; (W)
(1)

/
L

i=0

i=0

vi (4.12)

wy
P = [sinBp(8)9.(8,v,)dO

oy
ay (W) = by (L) = - (L) = —dy (L) = —c, (W) /2 =1-21
ay (L) = by(W) = co() =0,  by(1) = Yady () =2(4p* —dp +1)
ap(W) =20 +1), @ (1) =4p+1-3
by =10 -3, ¢ (n)=2p(l-2p)
dy (W)= 46p° =5u+1),  dy(u)=8u”-2u+1

Solving the system of algebraic equations consisting of Egs (4.10) and the two equations described
above, we obtain

C‘P(Vk)
Dl(v,)

0

- Ck
()]
D}

_(=20)p,
/\‘:.(Vk)

Ciph(vy)

- d=2mp (4.13)
Dkl-‘lé(\ﬂ )

TRV e (2v, + 1)
-¢;(2) l
e, 2V, — ey (2)

e (2v, +3)

u 0
e (2)e;(2v, +1) + D, (Vidaz (Vi)

X{Cf (VPR (Vi)

Here, it is assumed that
N (v = AR (VOAL (VO (2v, +3)e (v, ~ Dey (2) + Al (v A (v, )ef (2)e,(2v, +1)

A (Ve (2v, = e,y (2)
—AS (v )e (2)e,(2v +3)

vy

=va+3 )l(V‘)
D¥(v,) Py

Al (vi)e(2)

+a”* e (v, +3)g(v,)
20V + 32 (Vs AR (v, )e,(2v, +3)

(4.14)
Ali(v) I Ay (Vi) pI(v,)
= Py 3 -B (V
A (v, P2 ‘)Cu(vk) " k)qg(vk)
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Pg (v
4 (V)
Hence, all of the unknown coefficients have been found. Substituting their values into (4.6) and inverting
the transforms using inversion formula (2.41), putting m = 0 and e = c in this formula, we obtain

Ay (V)
Cp(vk)

A3 (V)

1
=q-,(v,)
AR (Vy) R

- D“(V‘)

) —(vy +1
C?rv‘ +Dfr VetD

3 ~(v +1
Cirs + D™D

S B ey
Q(r.0) k=0 06‘.(0)0,(1),)

. Wy =0=0w, (4.15)

where, by relations (2.40), (2.35) and (2.26),

(4.16)

-1
dQ, (coswgy)] dQ, (cosm)) 40
; . l =(2Vk+') Qv‘_( 0) ka( ] dQVl

55, (g, ®, ) dw, dw, dv |v=v‘_
Knowing the functions W(r, 6) and Q(r, ), we can then find the strain and stress fields, that is, we can
completely solve the problem in question.

Remark. The result which has been obtained can be extended in an obvious manner to the case when
anormal load is also applied over the second end of the cone being considered (that is, over the surface
r = a). It is more difficult to extend it if a shear load 7(8) (i = 0, 1) is applied to both ends, r = a = a,
and r = b = ay, that is, instead of boundary conditions (4.7), we must satisfy the conditions

T(a0,,0)=A(q;,0)=1,0), (=01 0,<0<w, (4.17)

One of the ways in which the results obtained above can be extended is as follows. Integration with
respect to 0 is carried out in relations (4.17) which leads to the equalities

0
A(a;.0)=T(0)+ B, i=0,1; T(8)= |1,(¥)d¥ (4.18)

Wy
where
Bi=Alg;,w), i=0,1 (4.19)

We apply integral transformation (4.6) to equalities (4.18), and as a result, instead of the homogeneous
conditions (4.8), we obtain the following

@
Ala) =Ty + By, Y= [sin8Q.(8,v,)dd (4.20)

0q

By satisfying these conditions in the same ways as conditions (4.8), we obtain formulae for the required
coefficients of problem (4.13) which contain B;. We then find A(g;, w)(i = 0, 1) using formulae (4.15)
and (1.9). The resulting expressions are substituted into (4.19), which leads to a system of two algebraic
equations from which we find B; (i = 0, 1).

The solutions of some interesting special cases of the problem are contained in formulae (4.13)-(4.16).

For example, in the case when there is no void in the cone, that is, wy = 0 and wy = w, formulae
(4.13)—(4.16), which determine the solution, in this case also hold with the following correction, according
to section 3

1 _ (2v, +])Q\lu (cosm)
O (wg, ) - [()Pv' (cosm)/av]\,:vk

¢.(0,v)= Pv" (cos 8),

and the numbers v, have to be found form the equation P},k (cos w) = 0 from which, in particular, it
follows, by virtue of (3.15), that vy = 0.

If, in the problem under consideration, apart from wg = 0 it is additionally assumed that v; = & =
7/2, then the resulting formulae (4.13)-(4.15) give the exact solution of the problem of the stressed
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state of a thin-walled spherical cupola supported on an absolutely rigid, smooth base. In this case, it is
necessary to use integral transformation (3.9) with m = 0 instead of integral transformation (4.6). Then,
instead of (4.15), we will have

13 {2k
CO’.-‘ +D?r (2k+l‘)

\W(r.0) .
C‘!rzk + D,f.r'(zk”) (4.21)

Q(r.0)

' =- §(4k + )Py, (cos8)
k=0

Formulae (4.13) and (4.16) for the coefficients C%, D} (j = 0, 1) still hold as well as formulae (4.11)
and (4.12) with v, = 2k (k = 0, 1, 2, ...) substituted into them and also

ni2

pe = [sinOp(8)Py (cos 0)d6 4.22)
0

If w; = w/2 is retained but it is not assumed that wg = 0, then formulae (4.13)-(4.16) with the obvious
correction give the solution of the problem of the stressed state of a thin-walled spherical cupola with
a conical incision at the centre of the cupola.

Taking the limit as b — « in formulae (4.13)-(4.16), (4.11), we obtain the solution of the problem in
the case of a semi-infinite hollow cone while, taking the limit as 2 — 0, we obtain the solution in the
case of a finite hollow cone with a point.

We now consider the case when a — 0. By formulae (4.11), e,(x) = 5", e;(x) = 0.

Instead of relations (4.13) and (4.15), we will have

_C? (I=-2w)p, pé(v‘,) 0 L
ol BT FOR (4.23)
¥(r.0) = Q.(8,v,) [Cor™
= — —_— hd = <
Q(r,e)” k=0 Gak(wo.wl) CI:I'V" s Wp 0 (!)' (424)

Finally, putting wg = 0, w; = o = /2, we obtain the exact solution of the problem of the stressed state
of a hemisphere supported on an absolutely rigid, smooth base. However, it is necessary here to use
formula (4.21), instead of formula (4.24), toput v, = 2k (k = 0, 1, 2, ...) in (4.21) and to take relation
(4.22) into account. The exact solution of a similar problem but for a Ponderable hemisphere has been
obtained by B. F. Bondareva using another method [7].
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