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THE AXISYMMETRIC MIXED PROBLEM IN THE 
THEORY OF ELASTICITY FOR A HOLLOW 

TRUNCATED CIRCULAR CONEt 
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An explicit solution is constructed for the axisymmetric problem of the stressed state of a hollow circular cone truncated by two 
spherical surfaces (the ends of the cone) with a normal load acting on one of the ends (the other end is unloaded) and sliding 
clamping or the side surfaces of the cone. A number of special cases is considered including the stressed state of a spherical 
cupola supported on an absolutely rigid, smooth, plane base and there can be a conical incision at the centre of the cupola. The 
method of solution is ea~,~ily extended to the case of arbitrary axisymmetric loading of the ends and is based on the use of a new 
integral transformation the derivation of which is presented. © 2000 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

A n  elast ic  ( shea r  modu lus  G,  Poisson 's  ra t io  Ix) hol low circular  cone:  a < r < b, to 0 < 0 < to 1, - ' r r ,  < q~ 
< "rr, t r unca t ed  by two spher ica l  surfaces r = a and  r = b, is subject  to  the  ac t ion  o f  a no rma l  compres -  
sive load  of  s t r e n g t h p ( 0 )  on  the surface r = b while the  o the r  end  of  the  cone (r = a)  is a ssumed  to be  
un loaded .  Cond i t ions  o f  sliding c lamping  are  satisfied on  the side conical  surfaces 0 --- co 0 and 0 = to1. 

A d o p t i n g  the n o t a t i o n  

2Gu,.(r, 0) = u(r, 0), 2Guo(r, 0) = v(r, O) (1.1) 

x,o(r, 0) = x0,(r, 0) = xA0) 

we wr i te  the  b o u n d a r y  cond i t ions  

~r(a,O)=~r(a,O)=O, ° r ( b , 0 ) = - P ( 0 ) ,  Xr(b, 0 ) = 0 ,  t °0~<0~<t° l  (1.2) 

v(r,  ooi)=O, "Cr(r, o3j)=O, j = 0 , 1 ;  a ~ r ~ b  (1.3) 

In  o r d e r  to  solve the  boundary -va lue  p rob l em,  we shall  use  the  so lu t ion  o f  the  L a m 6  equa t ion  in a 
fo rm which  has  b e e n  p r o p o s e d  ea r l i e r  in [1] 

u(r ,0)  = ~ ' ( r , 0 ) -  2(I - ~t)rAF, u ( r ,0)  = r-I~'(r,O) (1.4) 

~ ( r ,  0) = rF'(r) + (3 - 4~t)F, AAF = 0 

(r2 F ' )  ' VoF (sin 0F ' ) "  m2F 
AF= r2 r2 , -V , , ,F= s in0  sin2 0 ,  m = 0 , 1 , 2  . . . .  (1.5) 

Hence fo r th ,  a p r i m e  deno te s  a der ivat ive wi th  r e spec t  to  r and  a do t  deno te s  a der ivat ive  wi th  respec t  
to 0. A s  in [2], we r e p r e s e n t  the  b iha rmon ic  funct ion  F in the  fo rm 

F(r,O) = r2W(r,O)+f~(r,O), AW = Af~ = 0 (1.6) 

This  enab les  us to  express  the  s t ra in  and stress fields, accord ing  to Eqs  (1.4), in t e rms  of  the  two 
h a r m o n i c  funct ions  

u = - ( I  - 21.t)[r3W ' '"  + 4r2W" + 2rW] + 2(I - I.t)rVoW + r~'" + 4(I - I.t)~" (1.7) 
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v = [r2W" + (5 - 4H)rW + ~ '  + (3 - 41.t)r-l~]" 

xr(r,O)= A'(r,O), A(r,O)= lxr2W" +(l + 2~t)rVP'-(I- 2~t)W + (1-1a)Vo ~P + 

(1.8) 

+ ~ "  + (3 -  4H)(r-I~) ' 

(1 - 21.t)(~r (r, 0) = -(1 - 2~t)[(I - ~t)r3q/"" + (7 - 5tx)r2h u'" + 2(5 - Ix)rW" + 

+2(1 + ~t)W] + (1 - ~ t ) r ~ ' "  + (4p. 2 - 7~t + 5 ) ~ "  + 8~t(I - t x ) r - t ~  ' + 

(1.9) 

+V0{ (21.t 2 - 5Ix + 2)(r~P)" - pr-l[~" + (3 - 4~t)r-tD] } (1.10) 

Hence, the problem reduces to finding the harmonic functions • and f~ from boundary conditions 
(1.2) and (1.3). 

In order to construct an exact solution Of this problem, it is necessary to establish a suitable integral 
transform and to derive an inversion formula for it. An integral transform is established below which 
enables us to obtain not only the solution of the problem in question but also the solutions of more- 
complex boundary-value problems for hollow cones, including non-axisymmetric Cones. 

2. D E R I V A T I O N  OF THE I N T E G R A L  T R A N S F O R M  

The derivation of the integral transform is based on the solution of the following Sturm-Liouville 
boundary-value problems 

-VmT(O ) -  (~, + ~)T(O) = 0, CO 0 < 0 < toj, m=0,1,2  .... 

T" (to)) = 0; 
(2.1) 

a) T(toj)=0,  b) T'( toj)+hiT(toj)=O, c) j = 0 , 1  

It should be noted that the conical functions 

T(O)= P_'~+i4~(cos0), Q_"~+i4~(cos0) (2.2) 

are linearly independent solutions of the differential equation in_(2.1) [2]. 
It is required to determine the eigenvalues Xk (or vk = --1/2+i~'Xk ) and the eigenfunctions of problems 

(2.1) and to obtain a formula for the expansion of an arbitrary function in these eigenfunctions. 
In order to use the well-known apparatus in [3], we make the substitution 

T(O) = ( s in  0)-1/2y(0) ( 2 . 3 )  

in (2.1) and reduce problem (2.1) to the boundary-value problem 

y " ( 0 ) -  {~. + q(0)}y(0) = 0, to o < 0 < tol [q(0) sin2 0 = m 2 - ]//4] (2.4) 

/jy(0) - y(toj)coscty + y'(tos)sin ~xj = 0, j = 0, I 

which has been considered previously in [3]. 
Following the scheme proposed in [3] and taking account of relations (2.2) and (2.3), we start from 

the functions 
= • m c O ~0o(O,~) ~ P ~  ( os ), z0(o,~)= s4fffieQT(cose) (2.5) 

V= - I~ + iff-~ 

Using formula 3.4 (25) from [4], we calculate their Wronskian 

W(q~o, ~o) = -r,,,(v) 

where 
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22"'r(l + ~m + ~ v)r(~ + ~m+ ~ v) 
r,,,(v)= + v)r( ,A- 'A. ,+ v) (2.6) 

Next, we construct 'the functions 

-r,, ,(v)~fO,~)=~o(O,~)loX o - X o ( O , L ) ~ o  = ~ F ~ : ~ ( 0 ) ,  

- r , , , ( v ) z ( O , k ) = ~ F ~ : ' ~ ( e )  
(2.7) 

where 

" P~ (cos0)/iX o - Q ~ ( c o s O ) l i ~  o, j =  0,1 F;./(O)= ' . . . . . .  (2.8) 

and find their derivatives. The Wronskian of these functions is found to be equal to 

W(cp, X) = W = -[/oq}ol, X0 - l, ~Pol0Z o ] / F m (v) (2.9) 

Taking into account the fact that, by virtue of relation (2.3), 

(2.10) 

where 
Ii 'f(O) =-- t~ f  = sin ~ j f "  (to i ) + [cos a j  + ~ ctg 6oj sin a j  ] f ( ~ ) )  (2.11) 

instead of (2.9), we shall have 

F,,, (v)W = ~/sin to o sin {o I A'~ 

A I ~  * #11 * n l  * I I |  $ I1| = t, Pv toQv - toP;/ ,  Qv 

(2.12) 

Hence, the function ~(0,  h), defined by formula (1.6.2) from [3], has been constructed. 
The eigenvalues Xk of problem (2.4) and the eigenvalues associated with them Vk ---- -- 1/2+ix'hg must 

be fot}rld from the equation 

A',~, = 0, k =0,1,2 .... (2.13) 

The equality 

. . . .  , r p . ,  l .  ,n., r l .  r w  ]-I IoP~ k = "1 v l  o ~ , g v / t  I ~,~v I (2.14) 

is a consequence of (2.13), 
According to what has been previously described in [3], in order to obtain an expansion of the function 

f(0) in the eigenvalues of problem (2.4), it remains to calculate the residue of the function ~ (0 , f )  when 
k = hk using the formula given in [3] and to calculate the ratio ×(0, hk)Kq~(O, kk) Then, according to 
relations (2.7), (2.8) and (2.10), we obtain 

l",,, (v~.)Z(0, ~.t. ) = ,,/sin o~j sin 0 q~" (0, vk ) 

" " * '" ^ ' " "  s0"fiR" tPl (O. vk )=Pv~(cosO) t iQv~-~dvk tCO )l v, 

Additionally, when account is taken of equality (2.14), we have 

toQT, q,;"(o, vk ) 
~P(0,L,)=~tsint~o sin0 i.,o,,, r / v 

61 ~ v  k m k k 1 

~(O, ~'k ) II Qvk 

~p(0.~,~) Vsmt% toQ,, ~ 

(2.15) 



416 G. Ya. Popov 

On taking account of the fact that, according to relation (2.12) and the equality v = - 1 / 2 + i ~ ,  the 
equality 

" I I I  
d W  = d W  d~v=v ~ = ~/sinCOosinmlAt.(¢o0,¢ol) 
d~. X=M dv" (2vk + I)F,,,Cvj+) (2.16) 

lit  - ,,, dA' v 
A~(m o, m i ) =  dv v=vk 

holds in accordance with formula (1.6.5) from [3], we arrive at the expansion 

,~=0 ~mk((O0, f-OI) to,~ 

where 

(2.17) 

l 0 ~ v  L 
- (2v k + I) (2.18) 

~,,,k(¢oo,¢ol ) li+a~,'+ • F,,,(v k )7~]'(¢o0,¢ol) 

As previously [3], it can be shown that expansion (2.17) holds for any function from L([¢o0, ¢01]) and 
behaves as regards its convergence in the same way as a conventional Fourier series. In particular, 
converges to If(0 + 0) + f(0 + 0)]/2 if the function f(0) has a bounded variation in the neighbourhood 
of the point 0. 

It is obvious by construction that the eigenfunction ~o~'(0, Vk) satisfies ( -1 /4  - h  = v 2 + v) the Legendre 
equation [4]. 

- V , , , c p ' [ f O . v t ) + v k ( v  k +l)cP'l"ce, vk)=0 ,  co o <O<m] (2.19) 

and the boundary condition 

(7~'," C0. v,  > = 0, j = 0,1 (2.20) 

The result obtained can be interpreted as follows. We introduce the function g(0) = (sin 0)-1/2f(0) 
for which the integral 

¢0 I 

I ~ 0  IgC0)ld0 (2.21) 

exists. 
Expansion (2.17) can then be treated as the inversion formula 

g(O) = - Y. g~'cp',"CO, v , )  (2.22) 
~=0 ~,,a-(~O,031 ) 

for the integral transform 

0)  I 

gk" = ] sin 0cp~' (0, v, )g(0)d0 (2.23) 
{til l  

We will now establish the relation between the eigenfunction (2.15), constructed for boundary-value 
problem (2.4) or boundary-value problem (2.19), (2.20) and the eigenfunctions of boundary-value 
problems (2.1) in cases a, b and c (we shall call these problems (2.21)a, (2.21)b and (2.21)¢, respectively). 
We obtain the eigenfunction ~oam(0, vie) of boundary-value problem (2.1)a from (2.15), if, in (2.11) and 
boundary condition (2.20), we take 09 = 0 (j = 0, 1). As a result, we shall have the function 

¢PlI' (0, v, ) = P~ (cos 0)Qv'k (cos ¢o, ) - P~ (cos co, )Qv'k (cos 0) (2.24) 



Axisymmetric mixed problem in elasticity theory for a hollow truncated circular cone 417 

which satisfies the differential equation from (2.19) and the boundary conditions 

~pi','(o~i, v~ )= 0, j = 0 , 1  (2.25) 

while the numbers v~ have to be found from Eq. (2.3) which, in the case in question if one introduces 
the notation 

~ z ~ , l ( o ~ o , ~ 0 j )  = o1. , ,  i ,I ,1 l - __~ = Pd (cos co I )Qv (cos co o ) - Pd (cos co o)Q~ (cos co I ) (2.26) 

can be written in the form 

I11. III £2v~ (O)o,~i)=0, k=0,1 ,2  .... (2.27) 

Here, formula (2.18) is also changed and acquires the form 

- ) ]-i 
Q,,I (cosco0) OD~,.,,,(o)o,tol (2.28) 

I =(2vk + 1) ~"~' (cosco;) ~v ~:'l,k (co0,  t o j )  ~ ~ = ~  

In order to obtain the eigenfunction ~p~(0, vk) of boundary-value problem (2.1)0, we divide the 
boundary conditions in (2.2) by sin a. We see from this that they convert into the boundary conditions 
of problems (2.1)b i£ it is taken that 

ctg ~.i + ~ ctg o) i = hi, ctg ¢Xi = hi - ~ ctg o~j, j = 0, I (2.29) 

In this case, the functionals l~ become the functionals l h , that is, 

,= ,i i{,p,i, dPvl(c°s°~i) I'hjPv'l(coso~j) (2.30) liP  : dcoj 

and, on the basis of relation (2.15), we obtain the function 

m m ( c o s O ~ l l t t 3 m  m "C ^ ' l  h ~ m  %,(0, vk)= Pvk ~ ' l~vk -Qv~L osu) I ~evL. (2.31) 

This function will satisfy the boundary conditions 

~p;,(o3j,vk)+h)q)h(coj,v~.)= O, j = O , I  (2.32) 

The numbers vk have to be found form Eq. (2.13). If account is taken of the notation (2.26) and use 
is made of the equality 

dPv 11(cos 0) / dO = Pv '+ ~ (cos 0) + m ctg 0Pv 1(cos 0) (2.33) 

(which also holds for Qm(cos 0)) which follows from formula 3.6.1 (6) in [4], Eq. (2.13) takes the form 

I I I  D~..I, (°)o, (o~) = 0, k = 0,1, 2 .... (2.34) 

.a_ II ~t'~ m,m+l ~'v.ll"*'0,"~tn'l' "' . . . . .  /~ = ~vn"l+l"m+l + (m ctgo) ° + ho)Dvl+.,..m + (mctg¢o t - " ; / ~ v  + 

+[m 2 ctg 0% ctg (o I + m(h o ctg o~ t + h I ctg ¢o o) + hoh i ]Dv I'm 

where 

In the given case, formula (2.18) takes the form 

I h ( 3  m I 'o ~v~ 
I, = (2V~. + I) t, ,,, 

O,,,k (COo, O)l ) 11 Qv~ Fm (v~.) ~V [v:v~ 

(2.35) 

(2.36) 
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We obtain the eigenfunction q0m(0, Vk) of boundary-value problem (2.1)c from (2.31) on putting 
h i = 0 ( j  = 0, 1) there, which leads to the formula 

(p~!' (0, v, ) = Pv'~ (cos 0) dQv'* (cos c0, ) Q'. (cos 0) dP'~ (cos to o ) (2.37) 
do) l ~ do) o 

This function satisfies the boundary condition 

q)~.(ooj, vt)= O, j = 0 , 1  (2.38) 

and the numbers v, have to be found from the equation 

n t  I l l  Av~ -~v,.0(C0o,C01)=0, k=0,1 ,2  .... (2.39) 

We obtain an expression for £~mk,0(to 0, (Ol) from (2.35) by putting h0 = hi = 0 there. In this case, formula 
(2.18) is written as (2.18) is written as 

d . . . . .  c " " [ d ' " '  "coso3 ]-I 
I = (2v ,  + I) --o'Y(-~-~ / ~ / (2.40) 

o;i,.,(o~o,(o, ) av 
L V=Vk ,_J 

Hence, integral transformation, which are based on Sturm-Liouville problems (2.21)a, (2.21)a and 
(2.21)c and which hold for functions having a finite integral (2.21), can be written, according to relations 
(2.22) and (2.23), in the form 

( o  I 

g/' = ~ sin0tpl, (0,vk)g(0)d0, e = a . b , c  (2.41) 
O) 0 

) 
,' 0) 0 ~ 0 ~-~ ( 0  I 

,~=o ~,,/:(0,)0, COl)' 

3. S P E C I A L  CASES OF T H E  I N T E G R A L  
T R A N S F O R M A T I O N  O B T A I N E D  

If we confine ourselves solely to the solution of the problem formulated above the application of the 
integral transformations (2.41) when m = 0 is found to be sufficient. However, on changing to a non- 
hollow cone (o~ 0 = 0), transformations (2.41) cannot be applied directly since, in these transformations, 
it i~ necessary to take the  limit as (too ~ 0). First, we satisfy this passage to the limit expansion (2.17). 

We start with the transcendental equation (2.13). By taking account of relations (2.12), (2.11) and 
formula 3.6.1 (2) from [4], it can be shown that the second term when too = 0 in (2.13) is equal to zero 
and Eq. (2.13) becomes 

i: i11 I~Pvk =0, k=0,1 ,2  .... 

ctg CO -1 ,,, 
. . . .  ' "  ~" + 2 sinai] P';(c°sc°) II Pv =s ina i  dP~i (c ( so )  I- cosa  i 

do) 
(3.1) 

or, by virtue of (2.33), 

n l  + I • m Pvk (c°s°o)smal + P~k(c°s(°)[c°s°q + (c tgcos incq ) (m+~) l=0 ,  k =0.1.2 .... (3.2) 

According to relations (3.1) and (2.15), we arrive at the formula 

(pj (0, v k)= * "' '" '" 11Qv, Pv, (cos0) (3.3) 

We now determine what the expression A~'(to0, to1) becomes when to o ---) 0. According to relations 
(2.16) and (2.12), the equality 
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OA" aP. . . . . .  ' " " . . . . . .  v . . . . .  3Ov" aQ' v 3P(, 
av = I°Qv II fl---v- + II G li) av  - gPv"l~ ~ - lj'Qv"l° c-)v (3.4) 

has to be considered when v = vk. By virtue of the behaviour of Legendre functions [4] in the neigh- 
bourhood of unity, the principal contribution to A~(to 0, to1) when too ~ 0 will be made by the first term 
from (3.4) and it is therefore necessary to take 

a.t o,wl,=loQv (m)A~.(m). a'~'(m)=------~-v Iv=v, " 

If expressions (3.3) and (3.5) are substituted into (2.17) and (2.18), we obtain 

k=o ~,,,~ ((0) 0 

where 

(3.5) 

(3.6) 

l *  l~llt 
= (2v, + I1 , ~v, (3.7) 

cr,,,k (m) A'; (¢o)r., (v k ) 

If, as earlier, the functiong(0) is introduced, then expansion (3.6) can be looked upon as the inversion 
formula 

for the integral transformation 

- / " ' o 3 )  , , ,  . 
g~ t PvL (cos0) (3.8) g(O) = - ~  o,,,k (m) 

i i i  gi"(m) = J sin Og(O)Pd, (cos0)d0 (3.9) 
0 

We see that the eigenfunction ~p~(0) = Pm k (cos 0) satisfies the Legendre differential equation (2.19) 
and boundary condition (3.1). This easily enables us to establish the relation between this function 
and the eigenfunct:ions of boundary-value problems (2.1), if they are assumed to be defined in the 
interval (0, to), thai: is, when the boundary 0 = too disappears and to1 = to and one can put h0 = 0, 
hi = h, tos = to, am ---- a. Then, according to relations (3.1), the function ~o~(0) will be an eigenfunction 
of problem (2.1), when too = 0, to1 = to if we put al  = a = 0 in (3.1) and the numbers vk are found 
from the transcendental equation 

l i t  Pv, (cos to) = 0, k = 0, I, 2 .... (3.10) 

The expansion formula (3.8) and (3.9) have been given previously in a some what different form 
[5, 6] for this special case. 

The function Pm k (cos 0) will also be an eigenfunction of problem (2.1)o.when too = 0, to1 = to if the 
numbers Vk are found from the transcendental equation 

Pv'"+;(coso•)+(h+mctgo3)Pv•(coso3)=O, k = 0,1,2,. k ' "  (3.11) 

as can be shown by putting ctg al = h - l / 2  ctg to in (3.1) and using (2.33). 
The function ~0~'(0) will also be an eigenfunction of problem (2.1)c when too = 0, to1 = to, if the numbers 

vk are found from the transcendental equation 

I I 1+1  I l l  Pv~ ( c ° s ° ° ) + m c t g m P v ~ ( C ° S m ) = 0 ,  k = 0 , 1 , 2  . . . .  (3.12) 

which follows from (3.11) if one puts h = 0 there. 
It is important to note that the transcendental equations (3.10) and (3.12) admit of explicit solutions 

when to = rr/2. 
We shall now prove this. For example, putting to = ~r/2 in (3.10) and using formulae 3.4 (20) and 

1.2 (7) from [4], we reduce Eq. (3.10) to the form 
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2"'-,,/~1 r ( ~  - ,/_, m - '/, v~ ) t O  - ½ m + 'A v ,  )]- '  = 0 (3.13) 

f rom which we recognize two series of  values v ° = 2k - m + 1, v~ = - 2 k  + m - 2 which make the 
lef t -hand side of  equality (3.13) vanish. Here ,  the eigenfunction 

I l l  I I I  I l l  , % (0) = P ,,(cosO)= P~k_,,,+~(cos0) 
v~ (3.14) 

corresponds  to the first series of  values, v ° but, according to formula 3.6.1 (2) f rom [4], we have for 
integral indices 

Pt'"(z) = 0, m > I (3.15) 

and, hence,  eigenfunction (3.16) will not  be zero solely when k /> m. For  this reason, the eigen- 
functions corresponding to the values v~ are equal  to zero for  any value of  k I> 0, and the values of vk 
there fore  have to be discarded. In o rder  to write out  expansion (3.6) or (3.8), (3.9) for  this part icular  
system, it is necessary to calculate Crmk('rr/2) using formula (3.7) but  in the case under  consideration,  
we have 

f ,n- "~ 
2 k - r e + l ,  * '" n '"  tO' '~!L2J Vk 

= IIQv k = ~ 2 k - m + l ~  j = m  = 

= aPv"(()) = (-I)J '+ '2 '"-"v~k!  

av ~=z~-,,,+t r ( k -  m + ~ )  

22" k! F(k + ~ )  
r,,, (2k - m + I) = 

F ( k - m + ~ ) F ( k - m +  I) 

(3.16) 

In o rder  to obtain formula (3.16), equalit ies 3.4 (21) and and 3.4 (20) f rom [4] have been taken into 
account.  

On the basis of  relations (3.7), (3.4) and (3.6), expansion (3.8) becomes  

g(0) = - ~ g[!' (g / 2)(4k - 2m + 3)(k - m)!F(k - m + y2)t'_4~. ,,,+1 (cos 0) 
2 2'' k! F(k + ~ )  k=m 

In the special case when m = 0, we have 

g(O)=- ~=ogt.( 2 )(4k + 3)P2k+,(cosO), 

(3.17) 

I71 gk rr. = [. sinOg(O)p2~.+l(cosO)d 0 (3.18) 
0 

which is identical to the well-known result in [5]. 
We will now consider  Eq. (3.12) when to = ~r/2. Like Eq. (3.10), Eq. (3.12) becomes  Eq. (3.13), in 

which m has to be replaced by m + 1, which leads to the expansion (Vk = 2k - m)  

Pj~_,,,(cos 0) 
g~"(xl2)(4k i 2 ~ ' ~ -  ~ I) 

g ( 0 )  = - Z 
~ .... F,,, (2k - m) 

22" k! F(k + ~ )  

F(k - m + ~ )F(k  - m + I) 

(3.19) 

F,,,(2k - m) = 

which, in the special case when m = 0, gives the result known f rom [5]. 

4. T H E  S O L U T I O N  O F  T H E  P R O B L E M  

We will now apply integral t ransformat ion (2.41) to boundary-value prob lem (1.2), (1.3). In o rder  to 
satisfy conditions (1.3), it is sufficient, by formulae  (1.8) and (1.9), to require  that  

W (r, mi)  = ~ ( r ,  mi)  = 0, j = 0 , 1  (4.1) 
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These conditions dictate that integral transformation (2.41) when m = 0 and e = c be applied to the 
equations 

AtP=O. A ~ = O ,  a < r < b ,  co o < 0 < o )  I (4.2) 

The eigenfunction (2.37), which satisfies the Legendre equation (2.19), which we write in the form, 

¢p, (0, v k ) = Pv~ (cos 0) dQ''k (cos co z ) dPv~ (cos co 0) 
do  t Qvk (cos0) dc°o (4.3) 

is the kernel of the above-mentioned transformation. 
The numbers vk have to be found from Eq. (2.39) which can now be written in the form 

~lvv=v =0, k=0,1 ,2  .... 

(4.4) 
n'v = (co ,o,)¢(cos O o)- (cos,oo)O'v(cos ) 

According to relation (2.38), the function (4.3) satisfies the condition 

~pi.(coj,v,) = 0, j = 0 , 1  (4.5) 

On applying the above-mentioned integral transformation to Eqs (4.2), taking account of conditions 
(4.1) and (4.5) and ,;olving the resulting differential equations for the transform of the functions ~ and 
l~, we find 

~V,(r)l = ~' IlV(r,0)[I C°t .v" + D°r -(v'+'' 
Jsin0 Ilcp, (0 vk)d0 = (4.6) 

[[~k (r) o,. I I ~ ( r , ° ) l l  ' ' "-'~ ~"  ~- r , ~ - ( v ,  + ,  t ' k r  - -  *-"k" 

where C~,/Yk (j = 0, 1) are arbitrary constants which have to be found by satisfying boundary conditions 
(1.2). 

First, we satisfy the conditions 

"tr(b, O) = T , r ( a ,  0) = 0, (00 ~< 0 ~< ¢0j (4.7) 

In order to do this, it is sufficient to require that 

A(b, O) = A(a. O) = O, 030 <~ 0 <~ 6% 

and to apply integral transformation (4.6) which leads to the equalities 

A~(h) = A~(a) = 0, k = 0. 1, 2 .... (4.8) 

where 

o) I 

A~(r) = Ssin 0A(r,0)tp,.(0, v k )dO = 
¢0 0 

(4.9) 
-i r "  f2'k'(r)+p.r2W~'+(l+2l.t)rW~(r) - =(3-41.t)[r ~ , (  )] + 

- (  I - 2~t) ' t '~  ( r )  + ( I - ~ ) ( v ~  + v k )~e  k ( r )  

Substituting expre, ssions (4.6) here and satisfying conditions (4.8), we obtain the equations 

~ 0  0 0 Ck e,(2v ~ + 3)p°(vt. )+ C~e, (2v k + 1)p~ (vk) + D~e2(2)q2 (v k) = 0 

C~!el(2)e~(2vk + l)el(2)pO(vk)_ o _ D~ e t (2v, - I)e2 (2)q° (v,) - (4.10) 

--D}e I (2v k + l)q~(v k ) = 0 

Here, 
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el(x) = b ~ - a  t ,  e2(x) = (ab)" 

p~)(.v) = x 2 + 2 x  - ( I -  2~t), p~(x)= x 2 +2(1 - 21.t)x - ( 3 -  4~t) (4.11) 

q°(x)=x 2 -2 (1-1-0 ,  q~(x)=x 2 - 4~lX- 4(i - 2~t) 

We now satisfy the remaining boundary  condit ions f rom (1.2), that is, 

( I - 2 ~ ) C y z ( b , 0 ) = - ( I - 2 ~ ) p ( 0 ) ,  err(a, 0 ) = 0 ,  0) 0~<0<~c0 I 

We again apply integral t ransformation (4.6) to the conditions stated. As a result, after taking account  
of  formulae (1.10) and (4.6), we arrive at equat ions which can be obta ined from E_q0s (4, 10) if the 
following substitutions are made  in them: AiX(Vk) and Btz(vk) are substi tuted instead ofpz (Vk) and p2 a (vk) 
and q0 (Vk) and q~ (Vk) are subst i tuted instead of  C~(v~) and D~(Vk) respectively and, on the right-hand 
side of  the first equation, the expression (1 - 21x)peb~k ÷~ is subst i tuted instead of  zero and, on the right- 
hand side of  the second equation,  (1 - 21x)p~b"k÷~ is substi tuted instead of  zero. Here ,  the symbols in 
the above substitutions are interpreted as 

Ar,(v~i 3 ai(I.t ) i C~ (vk) 3 cj(bt) i 
(4.12) 

co I 
Pk = ~ sin 9p(O)q~¢ (0, v~ )dO 

O) 0 

a3(~t ) = b3(p) = -c3 (t.t) = -d3(~)  -- -c2(~t) /2  = I - 2 ~  

a2 (I.t) = bo(p) = Co(p) = 0, b2(I.t) = ~do(P.)  = 2(4}.t 2 -411 + 1) 

ao(I-t) = 2(~ + I), al (l-t) = 4~(p- + 1) -  3 

bl(p.) = 1 0 ~ - 3 ,  q(p-)=21.t(I-2i-t)  

dl(~t)=4(6j.t 2 -51. t+l) ,  d2(P.)=8p.2-2[Lt+l  

Solving the system of algebraic equat ions consisting of  Eqs (4.10) and the two equations described 
above, we obtain 

I-C°] (I-21.t)pk C , " . ( v k ) ~ .  = 
O~ ) A~.(Vt) D, I', ( v , )  

C~p~(v,)  = ( I -2p . )pk  x (4.13) 

o e , ( 2 v , + 3 ,  11, t _  , 2 t  )llj x{Ci~'(vk)P2(V')[e,(2)e2(2vi.+l)l+D,~'(vk)q°(V')e(2ve'(~e.2 , I  

Here ,  it is assumed that 

AO,,(v k ) = At"L (v t )A~2(v k )e, (2v k + 3)e~ (2v,  - t)e2(2) + A~2(vk)A~t(vt.)e~(2)e2(2vk + I) 

+a i. .[I A~9(vt.)el(2vk -I)e2(2) ] GO(v,) =b,,~ + 

[[Oy (v,) p2~V"'II-A~l(Vlc)el(2)e2(2Vl. + 3) I 

I Al~2(vk)el(2) ] 
+ aV~ -2e2(vk + 3)q~ (vk) A~l (V t )e I (2v k + 3) (4.14) 

At', (v,) IA. (v~ 
A~_ (V k ) I q2 {V/~ 
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A~i(v*) , l 'v "llA"(v') (v) P°(v  1 
A~t2(v,) = l~_t kJ Clj(vk ) -DtJ ~ q0(V k 

Hence, all of the un]alown coefficients have been found. Substituting their values into (4.6) and inverting 
the transforms using inversion formula (2.41), putting m = 0 and e = c in this formula, we obtain 

a(r,0)ii +O2r_,V,+), (o0 ~<0~<(O, (4.15) 

where, by relations (2.40), (2.35) and (2.26), 

I = (27 k + I) dQv' (c°s(o°)P dQv' (c°s(oI) d~lv ]-i 
(4.16) 

d 

Knowing the functions ~(r ,  0) and fl(r, 0), we can then find the strain and stress fields, that is, we can 
completely solve the problem in question. 

Remark. The restdt which has been obtained can be extended in an obvious manner to the case when 
a normal load is also applied over the second end of the cone being considered (that is, over the surface 
r = a). It is more difficult to extend it if a shear load ri(0) (i = 0, 1) is applied to both ends, r = a = a0 
and r = b = al, that is, instead of boundary conditions (4.7), we must satisfy the conditions 

"¢,.(oi,O)=A(ai,O)='~i(O), i=0,1; (o0 ~< 0~< (oi (4.17) 

One of the ways in which the results obtained above can be extended is as follows. Integration with 
respect to 0 is carried out in relations (4.17) which leads to the equalities 

o (4.18) 
A(ai,O)= Ti(O)+ B i, i=0,1;  ~ (0)=  Sxi(W)dW 

oi{I 

where 

Bi = A(ai, ¢o), i = 0, 1 (4.19) 

We apply integral transformation (4.6) to equalities (4.18), and as a result, instead of the homogeneous 
conditions (4.8), we obtain the following 

oi I 

Ak(ai) = Ti~. +Bi'Y~, Yk = Ssin0tp,.(O,v~) d0 (4.20) 
0)  o 

By satisfying these conditions in the same ways as conditions (4.8), we obtain formulae for the required 
coefficients of problem (4.13) which contain B i. We then find A(ai,  to)(i = 0, 1) using formulae (4.15) 
and (1.9). The resulting expressions are substituted into (4.19), which leads to a system of two algebraic 
equations from which we find Bi (i = 0, 1). 

The solutions of some interesting special cases of the problem are contained in formulae (4.13)-(4.16). 
For example, in the case when there is no void in the cone, that is, tOo = 0 and too = tO, formulae 

(4.13)-(4.16), which determine the solution, in this case also hold with the following correction, according 
to section 3 

q),.(0, vk)= P.I (cos0), v l  
((oo,(o,) 

(2v k + l)Qv I, (cos(o) 

= [3V/(cos (o) / ~v]v=v~ 

and the numbers vk have to be found form the equation P1 k (cos to) = 0 from which, in particular, it 
follows, by virtue of (3.15), that v0 = 0. 

If, in the problem under consideration, apart from tOo = 0 it is additionally assumed that tol = to = 
~r/2, then the resulting formulae (4.13)-(4.15) give the exact solution of the problem of the stressed 
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state of a thin-walled spherical cupola supported on an absolutely rigid, smooth base. In this case, it is 
necessary to use integral transformation (3.9) with rn = 0 instead of integral transformation (4.6). Then, 
instead of (4.15), we will have 

+ D°r-t2~+[ ) 

~ ( r , O )  ~ . = o  . . 

Formulae (4.13) and (4.16) for the coefficients C£, D{ (j = 0, 1) still hold as well as formulae (4.11) 
and (4.12) with vk = 2k (k = 0, 1, 2 . . . .  ) substituted into them and also 

rt/2 
Pk = .~ sin 0p(0)P2k (COS 0)d0 (4.22) 

o 

I f  to I = ~r/2 is retained but it is not assumed that to 0 = 0, then formulae (4.13)-(4.16) with the obvious 
correction give the solution of the problem of the stressed state of a thin-waUed spherical cupola with 
a conical incision at the centre of the cupola. 

Taking the limit as b --> ~ in formulae (4.13)-(4.16), (4.11), we obtain the solution of the problem in 
the case of a semi-infinite hollow cone while, taking the limit as a --> 0, we obtain the solution in the 
case of a finite hollow cone with a point. 

We now consider the case when a -+ 0. By formulae (4.11), el(x) = b x, eE(x) = 0. 
Instead of relations (4.13) and (4.15), we will have 

r-0 (I - 2~)p~. p~(v~. ) 
-'-jk = D° = D~ =0 
G- A~j (vk)b ~ p°(v~.)b 2 ' 

(4.23) 

~'(r,0) ~ q~,(0,vk) C°r ~ ' 
[[~(r, O)ll = -k~, ~3~.(COo, ¢o, ) cb.~. co0 ~< 0~< c0, (4.24) 

Finally, putting co 0 = 0, to 1 = to -- "rr/2, we obtain the exact solution of the problem of the stressed state 
of a hemisphere supported on an absolutely rigid, smooth base. However, it is necessary here to use 
formula (4.21), instead of formula (4.24), to put v k = 2k (k = 0, 1, 2 , . . . )  in (4.21) and to take relation 
(4.22) into account. The exact solution of a similar problem but for a Ponderable hemisphere has been 
obtained by B. E Bondareva using another method [7]. 
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